Progress in Negative Tone Organic Resists Based on Epoxide Cross-linking for EUVL

2013 International Symposium on Extreme Ultraviolet Lithography

Richard A. Lawson

Clifford L. Henderson

School of Chemical & Biomolecular Engineering
Georgia Institute of Technology

Jun Sung Chun a, b

Mark Neisser a

^a SEMATECH

^b CNSE of SUNY, Albany Nanotech, Albany, NY 12203

Outline

- 1. Why negative tone cross-linking molecular resists?
- 2. General performance/capabilities
- 3. Controlling cross-linking in these systems
- 4. EUVL results
- 5. Future work

Fundamental Problems for High Resolution Resists

-Utilization of molecules and imaging schemes that possess a small "pixel" size

Molecular resist platforms

-Ability to resist pattern collapse

Cross-linked organic materials as final features

-Ability to tailor amplification level and build in amplification to improve LER and resolution

Utilization of photoresponsive quenchers

-A design that can prevent resist inhomogeneity

Small molecule resists

Molecular Resists

 Molecular glasses are low molecular-weight organic compounds that readily form stable amorphous glasses

- Introduced to improve resolution but had other issues for positive tone
- Use for negative tone cross-linked resists appears much more favorable
- Good properties include: monodisperse & synthetic control

School of Chemical & Biomolecular Engineering

Neg. Tone MR with Cationic Cross-linking

Positive Tone

PAG

Negative Tone

- There are mechanistic changes in the patterning that affect performance
- Photoacid is no longer the most important reaction species active cation instead – the cross-linking must be controlled, not the acid

Neg. Tone MR with Cationic Polymerization

Potential advantages of cationic polymerization MRs

- superior mechanical strength
 cross-linking increases modulus, improves pattern collapse
- intrinsic diffusion control
 active cation is covalently attached to end of growing chain/network
 diffusivity decreases with extent of conversion
- low outgassing of resist
 no mass loss during reaction vs. deprotection schemes
- reduced swelling vs. polymers
 higher cross-link density in MR reduces swelling

Improved Mechanical Properties of Cross-linked Resists

- Using thin film bucking method, we can measure the modulus for ultra-thin films (SPIE 76391I, 2010)
- Cross-linked MR show higher modulus than positive tone polymeric resists both in bulk and ultra-thin films
- This leads to improved pattern collapse performance in negative tone resists due to higher critical stress before collapse (JVST B 28, C6S6, 2010)

MR – 2-Ep

20 nm 1:2

55 nm 1:2

50 nm 1:2

- Polymer shows inferior resolution and LER
- Differences likely due to cross-link (XL) density MR require higher extent of XL to reach full network = better mechanical properties

E-beam at Georgia Tech on JEOL JBX-9300FS 100 keV

Georgia Institute of Technology

School of Chemical & Biomolecular Engineering

Negative Tone Baseline

- Multiple MR available, but 4-Ep (below) is baseline material for all EUV
- PAG: TPS-SbF₆ 5 mol%, Developed in MIBK (organic solvent)
- Lower contrast reduces performance in EUV compared to e-beam

E-beam 100 keV

Esize = $40 \mu C/cm^2$ CD = 35 nmLER = 2.3 nm

E-beam at Georgia Tech on JEOL JBX-9300FS 100 keV

EUV

Esize $\sim 8 \text{ mJ/cm}^2$ CD = 32 nm LER = 4.9 nm

EUV at Paul Scherrer Institute

Controlling Cationic Cross-Linking

- Conventional CARs use base to improve resolution by acid quenching
- Base quencher ineffective in these systems because acid not active species (trioctylamine in 4Ep on left – even equimolar base:PAG ineffective)

Controlling Cationic Cross-Linking

20

$$H^{+}-MX_{n}$$
 + O
 R
 $NH_{4}^{+}-O-S-CF_{3}$
 $O.8$
 $DUV, 60 °C$
 $O.6$
 $UV, 60 °C$
 $O.6$
 $UV, 60 °C$
 $O.7$
 $O.8$
 $O.8$
 $O.8$
 $O.9$
 $O.9$

- Cross-linking cycle must be controlled by chain termination or reducing rate of cross-linking reaction
- Triflate anion can nucleophilically attack growing chain to act as chain termination agent and modifies rate of cross-linking
- Addition of ammonium triflate has strong effect on cross-linking (left plot), but we can do even better than this

$$\begin{array}{c} \text{unexposed} \\ \text{O} \\ \text{S}^{+} \\ \text{O} \\ \text{S}^{-} \\ \text{O} \\ \text{S}^{-} \\ \text{O} \\ \text{N} \\ \text{N$$

- 1 DUV, 90 °C

 0.8

 0.6

 0.4

 0.2

 0.2

 0.25

 0.5

 Dose (mJ/cm²)
- Addition of TPS-Tf shows chain termination when unexposed, but chain transfer when exposed (photoacid is regenerated)
 - By adding TPS-Tf on top of a constant amount of TPS-SbF₆ (PAG at 5 mol%), we see immediate effects on contrast (left plot)
 - This causes a shift in the contrast curve to higher dose, but improved performance in terms of LER and resolution

Additive Enhances Performance

- Significant improvement in resolution and LER 15 mJ/cm²
- Resist Formulation: 0.5:1 TPS-Tf:TPS-SbF₆
- LER (3σ) = 4.0 nm for 50 nm lines, 4.5 nm for 25 nm lines
- 22 nm lines resolve, limited by pattern collapse

EUV at Paul Scherrer Institute

Testing Performance on MET Tool

- New studies carried out on MET tool at Berkeley using dipole illumination with standard dark field mask
- First test was slightly overdosed minimum dose was 27.3 mJ/cm² for 30 nm 1:1 lines shown above

1:1 and 1:2 L:S Patterns

30 nm and 22 nm L:S patterns resolve, but overdosed

Dense 1:1 Line/Space Features

- 26 nm patterns on MET look good, but overdosed, a few bridges
- 22 nm and 20 nm dense features resolve, but much more bridging defects and some line bending

1:1 L:S Elbow Features

30 nm 20 nm

EUV at LBNL MET

- 30 nm dense elbow features look good, but slightly overdosed
- 20 nm elbow features resolve, but some pattern collapse/bridging defects observed

Dense Circle Features

- 22 nm

 100 nm
- 30 and 22 nm circle features look good with minimal bridging
- 20 nm circle features have more bridging defects, but appear to adequately resolve

EUV at

Pushing Toward Sub 20 nm Resolution

- Initial studies on these materials suggest they potentially can obtain sub-20 nm resolution
- Un-optimized 2-CHEp appears to have at least 15 nm intrinsic resolution (resolution limited by x-link reaction)
- The highest resolution materials (2-Ep and 2-CHEp) have not yet been investigated with additive or studied at EUV

Summary

- Negative tone molecular resists based on cross-linking show promise to satisfy EUV patterning requirements for 22 nm and below
- Potential benefits include: superior mechanical strength, intrinsic diffusion control, low outgassing of resist, and reduced swelling vs. polymers
- Controlling of cross-linking/polymerization by addition of novel control additives is key enabler for improving resolution and LER
- Standard illumination conditions on MET shows capability for 20 nm resolution with dose-to-size less than 25 mJ/cm².
- Plenty of room for optimization still exists in already high performing systems

Questions

Additional Slides

Base Developable Designs – TPOE-3Ep

Only 1 OH required for solubility

- Partial functionalization allows aqueous base developed systems
- Unique opportunity for direct comparison of solvent vs. base development
- Shows better contrast than 4-Ep, E₀ shifted away from 0 mJ/cm²,
- No measurable swelling from interferometry studies in solvent or base

TPOE-3Ep 100 keV E-beam Patterns

TMAH 60 nm 1:1

- 200 nm
- MIBK resolution comparable to 4-Ep
- MIBK and TMAH have equivalent LER
- Sensitivity and LER are very similar between organic solvent and aqueous base develop, but resolution is slightly better in solvent

